202305271605

Type :Note Tags : Number Theory


Quadratic Reciprocity

Note

Given two odd primes ,

Proof 1:

Let be a character of order on . Then by Corollary 1 to Theorem 3 in Jacobi Sums, $$ g(\chi)^{q+1} = \chi(-1)pJ(\chi,\chi, \dots , \chi)

Where there are $q$ $\chi's$ in the right hand side of the equation. This gives $$ J(\chi,\chi, \dots ,\chi) = p ^{-1}(g(\chi)^{2})^{(q+1)/2}\chi(-1)=p ^{-1}(p \chi(-1))^{(q+1)/2} \chi(-1) = p ^{(q-1)/2}(-1)^{((p-1)/2)((q-1)/2)}

Now . If , we get . When not all are equal, we can cyclicly rotate them to get equal terms, and so, mod q they vanish.

Thus $$\begin{align} J(\chi, \dots ,\chi) &= \left( \frac{q}{p} \right) \ (\mathrm{mo d} \ q) \ &= p ^{(q-1)/2}(-1)^{((p-1)/2)((q-1)/2)} (\mathrm{mo d} \ q) \ \implies \left( \frac{q}{p} \right) \left( \frac{p}{q} \right) &= (-1)^{((p-1)/2)((q-1)/2)} (\mathrm{mo d} \ q) \end{align}

and hence, we can drop the mod q since both sides are absolute value 1. --- # References [[Legendre Symbol]] [[Multiplicative Characters]] [[Jacobi Sums]] [[Equations over Finite Fields]]